
N9 1 - 2 1 946

SEVEN WAYS TO MAKE A HYPERTEXT PROJECT FAIL

Robert J. Glushko
Search Technology

Norcross, GA

ABSTRACT

Hypertext is an exciting concept, but designing and developing hypertext
applications of practical scale is hard. "Hypertext engineers" must overcome seven
problems to make a project feasible and successful. These are (1) Developing realistic
expectations in the face of hypertext hype; (2) Assembling a multidisciplinary project
team; (3) Establishing and following design guidelines; (4) Dealing with installed base
constraints; (5) Obtaining usable source files; (5) Finding appropriate software
technology and methods; and (6) Overcoming legal uncertainties about intellectual
property concerns.

INTRODUCTION

The excitement in the technical community and the popular press is rapidly
inspiring others to pursue the vision of hypertext as a means to combine text, graphics,
voice, and other media to make information more accessible, usable, and entertaining.
Nevertheless, the novelty and immaturity of "hypertext engineering" as a discipline
causes many projects to fall short of these goals. Elsewhere I have emphasized some

of the challenging design issues that must be overcome "to make the hypertext vision
happen (Glushko, 1990b). In this paper I take a broader view to include management
and non-technical factors to expand the list to seven ways in which hypertext projects
fail. Not all of these problems are specific to hypertext projects, but together these
seven issues conspire to make hypertext applications hard to design, develop, and
deploy successfully.

A Composite Case Study

Attracted by the excitement about hypertext, Company C decides that links and
navigation features will bring enhanced usability to a problem that has traditionally been
handled in a database or document archive. Since it is the first hypertext project in
Company C, all of the most talented and ambitious researchers and developers find
their way onto the project. No one keeps track of how much time and effort goes into it,
but after a few months a carefully hand-crafted demonstration system or prototype
emerges using "Hyper-X." Hyper-X is a highly-touted program that everyone is talking
and reading about as a revolutionary software advance.

The prototype system is flashy and compelling on the 19-inch workstation screen.
It contains only a tiny amount of the information contained in the application it is
intended to replace, but even a casual observer is impressed by how usable and
appealing it looks. The colors, graphics scanned from documents and books,
ammation, and sound effects come together seamlessly to create a multimedia proof-of-
concept.

The Vice President of Company C compares the prototype with the original text-
based system and declares the Hyper-X version a smashincj success. All that remains
is to "scale it up" by converting the remainder of the informatIon to hypertext.



J

SEVEN WAYS TO FAIL

How you interpret this case study so far might depend on where you are in your
project, or whether you are part of the prototype team or a member of the team tasked
to scale it up. But the stage is now set for disaster. In the sections that follow I analyze
the seven ways in which the project can fail based on the composite case study.

Unrealistic Expectations About Scale and Readiness

When the full-scale development project begins, the organization tasked to carry
it out usually has unrealistic expectations about how hard it is and about the capabilities
and resources needed to do it. Demonstration projects often bring together the best
people with ample resources and whose efforts benefit from ad hocinter-organizational
cooperation because of the novelty of hypertext. Many demonstration projects
"succeed" by using methods and tools that are impossible to scale up (Alschuler, 1989).
Often the demonstration project uses an off-the-shelf software package that provides
neither the capacity nor the performance to deliver the bulk of information now managed
by the traditional database or file system. Worse, the information examples and links in
the demonstration project may have been carefully hand-crafted, an unworkable
approach for a system several orders of magnitude larger. An obsessive focus on "how
it looks" often drives out serious consiOeration of "how it has to work." If a
demonstration project takes three months to convert five articles from an encyclopedia
into an interactive hypermedia form, how long will it take to convert a thousand articles
using the same techniques? Automatic, semiautomatic, or template-based techniques
are the only realistic option for large conversion projects, but these are almost never
applied during the initial prototyping effort, which usually focuses on user interface
concerns.

Over time, organizations will acquire an experience base that allows them to
make realistic estimates for large-scale projects that involve text and hypertext. But in
the meantime it is better to be conservative.

Mlsslng Skllls on Deslgn and Development Team

Organizations considering a hypertext project usually have ample software
design and development skills available. However, hypertext projects may require (or at
least benefit from) a broader mix of skills. Appropriate skills in a hypertext project team
include:

* Software designers
* User interface designers

Usability testers and potential
Technical writers and editors

* Indexers
* Database designers

users

Hypermedia projects can require still other talents, including graphic artists and
people who understand how to integrate multiple media, sometimes called "art
directors." For conversion projects, the participation of the author or editor of the
original information can be invaluable in understanding the presentation conventions of
the existing format. If neither is available, the project should allow additional time to



understand the design and design rationale of the existing information. Likewise, the
people who run the plant, repair the airplanes, or otherwise are expert in the application
area must be involved, or the project runs the risk of building a carefully-designed user
interface to the wrong information.

Few organizations or individuals have expertise in more than a few of these
areas. Even if the needed mix of skills.for a project organization can be assembled by
matrix management or by bringing _n appropriate consultants, making such an
interdisciplinary team work effectively together is no small challenge.

Few Published Case Studies or Design Guidelines

Because hypertext is a relatively new design field, there are few detailed
published case studies or design guidelines that desi_]ners can readily use. Published
reports about hypertext are not representative, typ=cally biased toward small-scale
demonstrations or research projects. While hypertext applications of practical scale
have been successfully designed and implemented, in general such projects are not
documented in the literature because of resource constraints in development
organizations, proprietary considerations, or because they are classified for security
reasons.

While there is a growing body of empirical research evaluating particular
hypertext systems or specific design options, this work does not usually generalize well.
In addition, what formal experiments have been able to establish is that most of the
design choices, when considered in isolation, have only small percentage impacts on
system usability (Nielsen, 1989). To complicate matters, sometimes small changes in
the user's task or the structure of the hypertext can lead to conflicting answers about the
relative merit of design features (Wright & Lickodsh, 1990). Individual differences in
users, especially motivational differences, and the effects of different tasks seem to
have major effects on system usability. Yet who the users are and the tasks they want
to carry out are often not something the hypertext system designer can control.

However, designers of hypertext systems can take steps to ensure that their
systems are acceptable and effective for their users. While empirically validated design
guidelines remain some way off, design methodologies for hypertext are being
proposed; the most comprehensive of these is that of Perlman (Perlman, 1989).

Installed Base Constraints

Hypertext demonstration projects are often done in research organizations that
have advanced technology, including workstations and high-resolution 19-inch monitors.
HyperCard on the Macintosh computer is also a very popular environment for
demonstration projects.

In contrast, the users for whom full-scale versions of these demonstration
systems must be targeted often work with an older or different installed base of
computing equipment. This installed base may consist predominantly of IBM AT-
compatible processors with small display screens having limited graphics resolution.

This situation often poses a dilemma for hypertext projects. Advanced
technology may be needed to demonstrate the benefits of hypertext capabilities, but the
presentation of these capabilities in the demonstration projects exceeds what the
installed base will support. It is essential that the funding or marketing organization
promoting the project know the costs and tradeoffs implied by various technology
alternatives. Which is more successful, a project that uses less-advanced tecnnology to
create lower expectations that can be met, or a project that uses state-of-the art



technology that is not readily available for the average user? There is no doht answer
but it is essential to ask the question when project goals are being establishe_l

In any case, the installed base slowly char_ges, so hypertext designs should be
prepared to take advantage of new technology capabilities as they become available. A
key consideration is separating the back end andfront end of the hypertext system so
that the user interface can be enhanced as the installed base permits it. Temporary
constraints in processing power for installed base computers can be overcome by
exploiting space vs. time tradeoffs in hypertext designs. For example, navigation maps
can be pre-computed and stored on a CD-ROM instead of computed in real time.

Poor Quality or Availability of Source Files

Many hypertext conversion projects are plagued by the poor quality or availability
of source files. Many documents have no digital form, and even when one exists,
unless a hypertext version was planned or contracted for when the documents were
created, the existing digital form may not be readily usable.

One common limitation derives from the language with which the digital version
of the document was composed or marked-up. The ideal situation is when the markup
language is SGML (Standard Generalized Markup Language) or some other language
that specifies the logical structure of the document rather than its presentation.

Optical character recognition (OCR) technology is rapidly improving, and new
OCR devices that output text in SGML form are especially promising (Grygo, 1989).
Nevertheless, error rates are non-negligible, so proofreading is always required, and the
nature of the residual errors in OCR documents makes manual text entry viable unless
correct recognition rates exceed 98% (Cushman, Ojha, & Daniels, 1990).

Taken together, potential problems with source files make =t essential that
hypertext projects carefully investigate source quality and availability before committing
to a project schedule. A single document sample may not be representative; often a
large document or document collection (such as the complete set of manuals for a large

Stem) was assembled from parts created by different vendors or subcontractors.
ch supplier may have provided documents in a different source form. If documents

are obtained in various source formats, it is generally more cost-effective to have a
third-party text conversion service transform all of them to a common format than to use
project software resources to carry out the conversion.

Fortunately, as the "neutral data" specifications being developed as part of CALS
(Department of Defense, 1985) and IMIS (Thomas & Clay, 1988) take hold, building
hypertext applications on existing information will become significantly easier.

Hypertext projects whose application involves periodic publication of text created
elsewhere should define formatting standards and quality control procedures for the
organization that produces the information. These measures can lead to substantial
improvement in the productivity of hypertext conversion by enabling the development of
automatic conversion software.

Lack of Appropriate Software Tools

Most off-the-shelf hypertext software is oriented toward creating new hypertexts
and is not well-suited for converting existing documents (Alschuler, 1989; Glushko,
1990a; Glushko, 1990b). Demonstration projects often use this software to create
expectations about the look and feel of a full-scale implementation, and it often comes
as a harsh shock to discover fundamental limitations in the software that jeopardize the
viability of a project.



It may be worth waiting for the next generation of hypertext software that directly
supports conversion. The CALS initiative has prompted many vendors to enter this
market, and the tools are expected to improve rapidly (Smithmidford, 1989).
Alternatively, some database programs or expert system shells may better support
hypertext features than programs that call themselves hypertext.

If off-the-shelf software must be used for a hypertext project, it is imperative that
any demonstration or proof-of-concept phase carefully address pragmatic issues of
scaling up. These include both capacity concerns -- can the program manage
significantly larger amounts of information with acceptable performance -- and resource
concerns -- does the program imply or impose design methods for defining units, links,
or other features that are infeasible when applied on a large scale (Glushko, 1990a,
1990b)?

Legal Uncertainties

In recent years there has been a rash of "look and feel" copyright infringement
lawsuits and similar claims for software patents. These legal controversies have arisen
because software has been defined both as a kind of "litera_ work," which makes it
copyrightable, and as a kind of machine or method of operating one, which makes it
patentable. While these legal analogies may be wrong and may someday be corrected
by a new intellectual property law that recognizes the special character of software
(Samuelson, 1989b), today software designers and developers are faced with chaos,
uncertainty, and legal action.

As unclear as the situation is for software in general, the novel character of
hypertext and hypermedia software raises still more complexities for intellectual property
law. For example, if copyright law has different rules for "literary works," "audiovisual
works," "sound recordings," and "pictorial works," into what legal category does an
interactive hypermedia encyclopedia or a talking book fall? Are new links or notes in a
hypertext system considered "derivative works" under copyright law? These and other
issues are not just legal curiosities; they will have considerable impact on the legal
protection available and hence the economic viability of hypermedia systems.

One aspect of copyright infringement that confronts hypermeclia designers and
developers is clear and well-known, but new technology has made it easier to break the
law. OCR, scanners, digital samplers and video "frame grabbers" are among the wide
variety of technology that makes it possible to copy almost anything and incorporate it
into a hypermedia system. But having the technology does not imply the right, and a
sure way to invite a lawsuit is to assume that it does. It is not a coincidence that many
hypertext applications have used government documents like standards and regulations
that are free of copyright restrictions.

The best defense against a copyright infringement claim is to be able to prove
independent development, so keeping careful documentation of design decisions is
essential. In addition, designs based on experiments or evaluations give the design a
"functional" character that narrows the scope of copyright infringement claims. It is best
to follow the golden rule when designing a system: Borrow from others no more than

ou would have them borrow from you. An alternative formulation of this principle can
e found in a well-reasoned paper that presents both sides of the look-and-feel debate:

Let he who has never borrowed cast the first lawsuit (Samuelson, 1989a).

SUMMARY

Hypertext is an attractive vision, but practical hypertext applications are hard to
build. Disciplined approaches to analyzing information, identifying constraints in its



structure and in the task environment, and using the appropriate implementation
technology are required. Successful hypertext projects are those that take a cautious
approach to problems of scale and that make the right tradeoffs along the way.

REFERENCES

Alschuler, L. (1989). Hand-crafted hypertext: Lessons from the ACM experiment. In E.
Barrett (Ed.), The Society of Text: Hypertext, Hypermedia, and the Social
Construction of Information (pp. 343-361 ). MIT Press.

Cushman, W., Ojha, P., & Daniels, C. (1990). Usable OCR: What are the minimum
performance requirements. Proceedings of the CHI '90 Conference on Human
Factors in Computing Systems, 145-151.

Department of Defense (1985). Computer.aided acquisition and logistic support.
Washington, DC: Office of the Secretary of Defense CALS Office.

Glushko, R.J. (1990a). Using off-the-shelf software to create a hypertext electronic
encyclopedia. Technical Communication, 37(1 ), February 1990, 28-33.

Glushko, R.J. (1990b). Visions of grandeur? Unix Review, 8(2), 70-80.

Grygo, G. (1989). High-volume scanners aid conversion to CALS standard. Digital
Review, 6(27), July 10, 1989, 29.

Nielsen, J. (1989). The matters that really matter for hypertext usability. Hypertext '89
Proceedings, 239-248.

Perlman, G. (1989). Asynchronous design/evaluation methods for hypertext technology
development. Hypertext '89 Proceedings, ACM: New York, 61-81.

Samuelson, P. (1989a). Protecting user interfaces through copyright: The debate.
Proceedings of the ACM Conference on Computer-Human Interaction - CHI '89,
97-103.

Samuelson, P. (1989b). Why the look and feel of software user interfaces should not be
protected by copyright law. Communications of the ACM, 32(5), 563-572.

Smithmidford, R. (1989). Vendors focus on CALS conversions for existing paper
documents. Federal Computer Week, 3(36), September 4, 1989, 38.

Thomas, D., & Clay, J. (1988). Computer-based maintenance aids for technicians:
Project final report. Air Force Human Resources Laboratory Technical Report
AFHRL-TR-87-44, Wdght-Patterson Air Force Base, OH.

Wright, P., & Lickorish, A. (1990). An empirical comparison of two navigation systems
for two hypertexts. In C. Green & R. McAlease (Eds.), Hypertext: Theory into
practice I1. Intellect Press.


